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Abstract

Parameter sensitivity is defined as the estimation of changes in the modeling
functions and design variables due to small changes in the fixed parameters of the
formulation. There are currently several methods for estimating parameter sensitivities
which either require difficult to obtain second order information, or do not return reliable
estimates for the derivatives. Additionally, all the methods assume that the set of active
constraints does not change in a neighborhood of the estimation point. If the active set
does in fact change, than any extrapolations based on these derivatives may be in error. It
is the objective of this work to investigate new methods for estimating parameter
sensitivities that are more efficient than current methods for estimating sensitivities when
the active set changes.

The new method proposed for estimating sensitivity derivatives is based on the
recursive quadratic programming (RQP) method and in conjunction a differencing formula
to produce estimates of the sensitivities. This method is compared to existing methods and
is shown to be very competitive in terms of the number of function evaluations required.
In terms of accuracy, the method is shown to be equivalent to a modified version of the
Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS
method employed by the RQP algorithm. Initial testing on a test set with known
sensitivities demonstrates that the method can accurately calculate the parameter sensitivity.

To handle changes in the active set, a deflection algorithm is proposed for those
cases where the new actives set of constraints remains linearly independent. For those
cases where dependencies occur, a directional derivative is proposed. A few simple
examples are included for the algorithm, but extensive testing has not yet been performed.



1. Introduction

Estimation of the sensitivity of problem functions with respect to problem variables
forms the basis for many of our modern day algorithms for engineering optimization. The
most common application of problem sensitivities has been in the calculation of objective
function and constraint partial derivatives for determining search directions and optimality
conditions. A second form of sensitivity analysis, parameter sensitivity, has also become
an important topic in recent years with the advent of renewed research in the optimization of
large engineering systems by means of decomposition methods. By parameter sensitivity,
we refer to the estimation of changes in the modeling functions and current design variables
due to small changes in the fixed parameters of the formulation. Methods for calculating
these derivatives have been proposed and have been used as the basis of a method for
multi-level decomposition of large engineering problems [Sobieski, 1982]. Two
drawbacks to estimating parameter sensitivities by current methods have been: (1) the need
for second order information about the Lagrangian at the current point, and (2) the
estimates assume no change in the active set of constraints. The objectives of this work
were to investigate solutions to these two problems.

1.1. STANDARD NOTATION

To provide a framework about which we can discuss the various ways sensitivity
analysis can be performed, the following standard form of the nonlinear programming
problem, which explicitly represents the problem parameters, is presented.

Minimize: f{(x,P) Objective function (1.1)
Subject to: hy(x,P) =0 Equality constraints 1=1,L (1.2)
gix,P)20 Inequality constraints j = 1,J (1.3)

Xmin <X < Xmax  Variable bounds (1.4)

X = (X1,X2,...,Xn)  Design variables (1.5)

P = (p1,p2....pk)  Problem parameters (1.6)

In the above formulation, we assume that the problem functions f, g, and h can be
either linear or nonlinear functions of the design variables. We also assume that the
problem parameters P, are held fixed during the course of the optimization. Any candidate
solution point, x* , must satisfy the following first order Kuhn-Tucker conditions:

VxL(x,v,u) =0 (1.7)
hi(x) =0 1=1,L (1.8)
gix)20 j=1]J (1.9)



u;gi(x) =0 j=1] (1.10)

uj20 j=1] (1.11)
where the Lagrangian L, is given by:
L(x,v,1) = f(x) + 2v] hi(x) - 205 gj(X) (1.12)

At some point, usually the optimal point, we are interested in understanding the
effect that changes in P will have on our proposed solution x*. Therefore we seek the
sensitivities, df/dP, dx/oP, and d(h,g)/0P!. In this report, we will propose a new
algorithm based on the Recursive Quadratic Programming (RQP) method for estimating
these parameter sensitivities. The following sections provide a description of this algorithm
and how it relates to current methods, a discussion of the implementation issues, and some
initial testing on a test set of known characteristics. In addition, section 6 proposes some
solutions for estimating sensitivities in those cases where the active set of the constraints
changes when the parameter is changed.

1 The notation (h,g) refers to the set of constraints active at the current point.



2. Background

The standard problem of parameter sensitivity analysis is to indicate how the
objective function, constraints, and optimum design variables will change when problem
parameters or design variables are changed from their current values. Parameter Sensitivity
analysis is usually performed at a candidate optimum point where we might be interested in
studying how the optimal design might be effected by changes in specifications, variability
due to manufacturing, or operational noises. In this chapter we present a historical
overview of the significant developments in sensitivity analysis and provide a review and
assessment of current parameter sensitivity methods. The final section of the chapter
reviews work done in estimating parameter sensitivities for those cases where the active

constraint set changes.

2.1. _REVIEW OF PARAMETER SENSITIVITY METHODS

The roots of sensitivity analysis can be traced to Lagrange (1881) when he
suggested solving equality constrained extrema problems by finding the solution x*,and

v*, for the equations

ViL(x,v) =0 2.1)

h(x) =0 2.2)
where

L(x,v) = f(x) + 2vjhy(x) (2.3)

where the vj are undetermined multipliers or Lagrange multipliers. The paper did not
provide the conditions for when solutions of equation (2.1-2.3), were actual solutions of

the extrema problems or how to interpret the Lagrange multipliers.

Samuelson (1947) gave several interpretations of Lagrange multipliers in an
economic setting. He developed approaches based on using Lagrange multipliers to solve
different economic models and was the first to clearly identify Lagrange multipliers as
shadow prices in an economic context. Kuhn and Tucker (1951) presented conditions for
relative extrema which use the Lagrange multipliers to establish optimality (ref. eq. 1.7 -
1.12). Since 1951 several constraint qualifications and extensions to these conditions have
been proposed and are described in Bazaraa and Shetty (1979).

Dantzig (1963) brought forth the idea of "Post Optimality Analysis" for linear
programs. Dantzig described post optimality analysis as the calculation of the sensitivity of
the optimum with respect to changes in the problem parameters. Sensitivity analysis has
been widely used in linear programming, a good survey of its use is provided by Gal



(1984).

Fiacco et al. (1968,1974,1976,1983) has also done extensive research in the area of
sensitivity analysis. His book "Introduction to Sensitivity and Stability Analysis" (1983)
covers the significant developments in the field of sensitivity analysis prior to 1982. He
has published many articles on sensitivity analysis, and has probably been the most active
researcher of sensitivity analysis for nonlinear programming problems.

In the following subsections, we will discuss past work related to the determination
of sensitivity information for nonlinear programming problems. The methods we will
discuss range from the most simplistic approach of reoptimization to more elaborate
approaches based on the Kuhn-Tucker conditions or advanced optimization methods.

2.1.1. Brute Force Methods

The simplest, and probably most used method, for parameter sensitivity analysis is
to re-optimize the problem for the new values of the problem parameters and plot the
trends. We will refer to this as the Brute Force method. The Brute Force method is
probably the most accurate of the methods available (for large variations in Ap, but can
experience round off and truncation errors when used to approximate derivatives) but it can
be computationally expensive even for small problems. Examples of its use in the literature
are given in Arbuckle and Sliwa (1984) and Robertson and Gabriele (1987).

Armacost and Fiacco (1974) and McKeown (1980 b) describe a direct approach to
calculating parameter sensitivities based on the central difference approximation given
below

df* f(x*,p + Ap) - f(x*,p - Ap)

ar 2.4
b 250 2.4)
ox* _ x*(p + Ap) - x*(p - Ap) 2.5)
op 2Ap

This method requires the problem to be reoptimized (to a high degree of accuracy) for two
different values of the parameter. McKeown states that this method should not be used as a
primary method for the calculation of sensitivities because it is computationally expensive.

2.1.2. Kuhn-Tucker Methods

To avoid the computational expense of reoptimization, several researchers have
developed sensitivity methods based on the Kuhn-Tucker conditions (1.7) - (1.12). Two
types of algorithms have resulted, those that differentiate the Kuhn-Tucker conditions with
respect to p, and those that differentiate the optimality conditions for penalty functions.
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In the former category, a set of Kuhn-Tucker sensitivity equations have been
derived independently by several authors (Armacost and Fiacco 1974, Sobieski et. al.
1981, McKeown 1980 b) and result in the following linear system of equations.

V2L Vyhg || & | | DL
9Pi |, | P (2.6)
d(v,u) [ | och,g)

Vi)t 0 9pi Jpi

This linear system can be solved for the sensitivity of the design variables with
respect to a problem parameter dx/dp;, and the sensitivity of the Lagrange multipliers with
respect to pj, d(v,u)/dp;. These can then be used to determine the sensitivity of the
objective function with respect to p;j by the following

df _of  ofTox

For any change in the parameter Apj, the new optimum value of the objective

function or design variables can be estimated from the linear extrapolations

df
fnew = f(x*o1d) + Apj aE (2.8)
* * aX
X new =X old + Apj i (2.9)

These equations are bounded by the assumption that the active set remains the

same. An estimate of when the active set will change can be made by examining the
Lagrange multipliers of the active inequality constraints and linear approximations of the
inactive constraints. An inequality constraint should leave the active set when its Lagrange
multiplier goes to zero. The corresponding value of Ap; where this occurs is predicted by

using the linear prediction

4
opi
A new inequality constraint will enter the active set when its value goes to zero. A linear

u
Apj = —l j € active set of constraints (2.10)

prediction for when this happens is given by

£i

Ap; = = j & active set of constraints (2.11)
a_gi + dg j- odx
opi Jx opi



We can predict the change in active set to occur at the smallest value of Ap; obtained from
applying equations 2.10 and 2.11 to all constraints.

Fiacco (1974,1980,1983) has developed first and second order extrapolation
techniques to predict the new value of the optimum when parameters are perturbed.
Armacost and Fiacco have developed a second order extrapolation for the objective function
value for the special case where the problem parameters are confined to being the right hand
side values of the constraints. This provides second order response information for the
objective function using the Lagrange multipliers and the partials with respect to P of the
Lagrange multipliers.

Sobieski, et. al. (1981) observed that a more accurate estimate of frew given in
(2.8) can be obtained if the value of xpew given in (2.9) is used to calculate the value of the
objective function at a perturbation Ap;j. This will be a more accurate estimate for problems
where the constraints are well behaved and not highly nonlinear, but the objective function
is nonlinear.

Barthelemy and Sobieski (1983) derived the following formula that can also be

used to calculate the sensitivity of the objective function without the need to calculate
ox*/dp,

nineq

%f; &t um&‘- (2.12)

The formula can be derived by assuming that objective function behaves like the
Lagrangian in the region of the optimum. This formula has also been derived by Fiacco
(1983) and McKeown (1980 b).

Diewart (1984) has developed some new sensitivity theories for dealing with the
addition of constraints at the solution of economic models before the solution of the
sensitivity equations. This analysis is important because there may be short term
restrictions on modifications that can be made to the system. The paper presents a
recursive relationship that can be used to avoid refactorizing the sensitivity equations when
a new constraint is added to the problem. The paper also presents equations that can be
used to calculate a second order estimate of the location of the optimum, but this formula
requires third order derivatives which are seldom available in engineering.

2.1.3. Methods Based on the Extended Design Space

Vanderplaats (1984 a, 1984 b) and Vanderplaats and Yoshida (1985, 1986) have
6



developed an approach for calculating the sensitivity based on the method of feasible

~ directions. The sensitivities are estimated by extending the set of design variables to

include the problem parameters for which a feasible direction is then determined. This
method is known as the Extended Design Space (EDS) method. Of the methods discussed,
it has the dual advantages of simplicity and efficiency. Vanderplaats (1984 a) reports that
the EDS method can handle near active constraints, and is able to leave constraint
linearizations. However, the method does suffer from a sensitivity to one of its algorithm
parameters as reported in Vanderplaats and Cai (1987), and is unable to predict when
constraints will leave the active set. The EDS method is also sensitive to the restriction of
the move vector to be of length one.

The EDS method can be used to assess the effect of perturbing several parameters at
the same time. It is also able to solve for sensitivities of degenerate optimal points where
either strict complementarity does not hold, or the constraint gradients of the active
constraints are linearly dependent. The method seems to give good estimations for medium
sized perturbations of the parameters, but for small perturbations the the Kuhn-Tucker
method described above gives better results. Vanderplaats and Cai (1987) also report that
there are some cases where the EDS algorithm can produce incorrect values of the
sensitivity derivatives.

Vanderplaats also proposes a second order approximation technique which is
interesting but requires second derivatives of the objective function and constraints. The
second order method solves a quadratic approximating problem for a specified value of the
parameter. The second order method will give good results in a larger region about the
optimum than first order methods and does not appear to be as sensitive to changes in the
active set as other methods are. However, there is still the problem of obtaining the
Hessians of the objective function and constraints and solving the quadratic approximating
problem. Vanderplaats and Cai (1987) feel that the second order EDS algorithm is the best
option short of reoptimizing the problem for estimating sensitivities. But they caution that
the method should not always be used because of its high computational cost.

2.1.4. Variable Sensitivities .

McKeown (1980 a,c) has developed sensitivity analysis techniques for determining
the sensitivity of design variables subject to perturbations about the optimum. This
technique is based on an eigenvector analysis of the reduced Hessian matrix which applies
to a variant of our standard problem (1.1)-(1.6) where no problem parameters exist . For
unconstrained problems the major eigenvector will point in the direction of maximum
increase of the objective function, the minor eigenvector will point in the direction of
minimum increase of the objective function. For constrained problems the directions are
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projected on the active constraints. This type of information may be useful for setting
tolerances on design variables.

For McKeown's algorithm, the Hessian of the Lagrangian is needed but the
analysis is performed using only the reduced Hessian of the Lagrangian. An algorithm is
provided for reducing the Hessian. If the Hessian is to be evaluated numerically, an
algorithm is provided for the calculation of the reduced Hessian of the Lagrangian directly.
This will reduce the number of extra function evaluations that are needed to conduct the
sensitivity analysis.

2.1.5. Other Work

Garcia and Zangwill (1981) describe a Homotopy approach that can be used to
solve nonlinear programming problems. They state that this approach can also be used to
solve parametric nonlinear programming problems and is closely related to sensitivity and
perturbation analysis. Komija and Hirabay (1984) discuss some theoretical topics involved
in using a Homotopy approach to calculate parameter sensitivities when the active set of
constraints changes.

Dinkel and Kochenberger and Wong (1983) have developed an incremental
approach for solving for the sensitivities of geometric programming problems. The
approach is to ask the user for the new value of the parameter and then make several steps
with corrections to reach that point. They found the smaller the step they used the more
accurate the solution would be.

Jittorntrum (1984) examines solving for the sensitivity of degenerate optimum
points using the Kuhn-Tucker sensitivity equations. He provides a way to solve these
problems using directional derivatives which provides different answers for both positive
and negative perturbations in the parameters. Other theoretical issues for the use of
directional derivatives to calculate optimum parameter sensitivities have been addressed by
Janin (1984), Gauvin and Dubeau (1983), and Rockafellar, R. T. (1984).

Zolezzi (1985) examines the conditions under which the Lagrange multipliers are
continuous under perturbations in the problem data. This is important because Kuhn-
Tucker sensitivity analysis uses Lagrange multipliers and rates of change of the Lagrange
multipliers to predict the rate of change of the objective function. Cornet and Laroque
(1987) establish conditions under which the values of the Lagrange multipliers are
Lipschitz continuous for perturbations in the problem data.

Ganesh and Biegler (1987) have developed a sensitivity analysis based on the
reduced Hessian. The reduction is conducted by using the equality constraints and the
8



implicit function theorem to reduce the dimensionality of the Hessian matrix that needs to
be calculated. Their method is beneficial when there are equality constraints present in the
formulation of the problem, because they have reduced the number of function evaluations
required to find the required second order information numerically. Their method does not
provide dv/dp without calculating the full Hessian of the Lagrangian.

Rao (1987 a) and Guang-Yaun and Wen-Quan (1985) have studied the problem of
dealing with fuzzy constraints and fuzzy objective functions. In their work they first solve
a crisp problem then they attempt to calculate how far they can relax constraints while
improving the objective function. To use their technique the user is required to specify
how much violation is allowed in the constraints. Templeman (1987) reports using fuzzy
set theory and optimization to design structures and deal with uncertainties in the problem.

Sandgren, Gim and Ragsdell (1985) describe a problem formulation that can be
used to obtain optimum designs with a minimum sensitivity to uncontrollable parameters.
Their approach does not use post optimality analysis but uses a modified objective function
to deal with the uncertainties in the problem parameters.

The area of calculating sensitivity derivatives with respect to design variables ( i. e.
the calculation of gradients of functions) has been an area of active research. This can lead
to significant savings over using finite differencing. The structural optimization community
now widely uses sensitivity analysis when the finite element method is used to analyze a
structure. An excellent survey article of methods of sensitivity analysis for structural
optimization is provided by Adelman and Haftka (1986).

Haug and Arora, et al. (1977,1979,1981) have developed ways to calculate the
gradients analytically for many structural and dynamic applications. Many of these
methods are described in the book by Haug, Komkov and Choi (1985).

Sobieski, et al. (1981,1982,1983,1984,1985,1986,1987) has been working on
developing sensitivity techniques for use with multi-level decomposition techniques.
Decomposition methods break the solution of a large problem into a system level problem
and a group of subproblems. Each subproblem is solved using a special formulation and
inputs from the system level problem. A sensitivity analysis is performed on the
subproblem and the results are feed as input to the system level problem. The system level
problem gathers all the sensitivities of the subproblems and then based on these inputs and
others, determines the next iteration of the process. Usually, the equations (2.6) - (2.9) are
used at the subsystem level to determine the required sensitivities, but some difficulties
have been encountered when changes in the active set occur.




Schmit and Chang (1984) have developed an extension of Sobieski's work and
derived sensitivity equations for structural optimization problems. They derived more
restrictive limits on the allowable perturbations than those provided by Sobieski. They
have assumed that second derivatives of the constraints are available which is true of many
structural problems but may not be true for other application areas.

Schmit and Chang formulated their structural optimization problem using reciprocal
variables and solved for the sensitivity of the dual problem. For their structural problems,
the Hessian of the Lagrangian was diagonally dominate and the Hessian of the objective
function was analytically available. For this class of problems good results can be expected
even if the Hessian of the Lagrangian is inaccurate.

Buys and Gonin (1977) developed and implemented a sensitivity analysis
procedure for an augmented Lagrangian (AL) type code, VFO1A. Their implementation is
encouraging because they make use of the approximations of the Hessian of the Lagrangian
that were calculated during the solution of the original problem, The results that they
obtained using the approximate matrices were in very close agreement of those obtained by
using the exact matrices.

McKeown (1980 b) derives both the first and second order Kuhn-Tucker parameter
sensitivity equations. He also provides a discussion of Fiacco's sensitivity for SUMT
penalty functions versus Buys and Gonin's sensitivity for AL penalty functions. He
concludes that using sensitivity for AL penalty functions should be superior to sensitivity
by SUMT because AL produces better conditioned matrices.

2.2. PREVIOUS WORK IN ESTIMATING PARAMETER SENSITIVITIES FOR
CHANGES IN THE ACTIVE SET

When the active set of constraints changes, one of the underlying assumptions
made in deriving the Kuhn-Tucker sensitivity equations is violated. This can result in
inaccuracies in any extrapolations based on these sensitivities since, in general, a change in
the active constraints will result in a different set of sensitivities. Accurate sensitivity
analysis in the presence of active set changes is also very important for efficient
convergence of the multi-level decomposition techniques proposed by Sobieski and, in
general, for an accurate representation of the local sensitivities.

In the following subsections, we will first discuss the different cases that occur as a
result of a constraint entering or leaving the active set, what effects these cases have on
sensitivity analysis, and how changes in the active set can be predicted. We will then
present examples of the sensitivities for the different cases which will also serve to indicate
how the different sensitivity algorithms perform.
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2.2.1. Cases to Consider

When a new constraint enters the active set, or a currently active constraint leaves
the active set, we can expect a change in the sensitivity derivatives. However, it is also
possible that the linear independence of the constraint gradients can also be affected. For
the discussion that follows, we define the following four cases that can result from changes
in the active set,

1. A constraint enters the active set and the constraint gradients are linearly

independent.

2. A constraint leaves the active set and the constraint gradients are linearly

independent. .

3. A constraint enters the active set replacing an active constraint and the constraint

gradients are linearly dependent.
4. A constraint enters the active set and feasible region disappears.

For Cases 1 and 2, we can expect discontinuities in the following derivatives when
the active set changes: d2f*/dp2, ox*/dp, and du*/dp.

Case 3 is characterized by a discontinuity in the Lagrange multiplier estimates which
causes a discontinuity in df*/dp. Since the active set changes there will also be a
discontinuity in dx*/dp. At the point where the constraints become linearly dependent , the
Kuhn-Tucker sensitivity equations become singular. Often what is happening for Case 3 is
that an exchange of constraints in the active set is about to take place (i.e. the new
constraint may replace one of the constraints that is already in the active set ). If the
problem is not poorly formulated, we will find ourselves moving through the degenerate
point as p increases or decreases and one of the constraints will be dropped from the active
set.

Case 4 is characterized as a point from which p can only be perturbed in one
direction. If p is perturbed in the wrong direction this will cause there to be no feasible
region and there will be no solution for the optimization problem with this value of p. Thus
we can only perturb p in the one direction that causes the optimum path to move into the
feasible region, and there will only exist a directional derivative for the problem in that
direction. Case 4 can be thought of as an overconstrained design where the designer
adjusted a parameter to the point where the design is no longer able to meet specifications.

2.2.2. Prediction of when the Active set will Change

Barthelemy and Sobieski (1983 a) have observed that the accuracy of extrapolations
of the objective function deteriorates rapidly when the active set changes. From section
2.1.2, we saw that we can use equations 2.10 and 2.11 to predict where the active set will
change, thus we can use this information to predict when the extrapolations will deteriorate.

11




A problem with bounding Ap by equations 2.10 and 2.11 is that the estimate is only
good for the first constraint that is encountered because once the active set changes the
search direction to the new optimum will change (the discontinuity in dx/dp). Thus, it
becomes very difficult to estimate when or which constraint will leave/enter the active set
second. This problem will be addressed in section 6.

The merit of using equations 2.10 and 2.11 to predict when the active set will
change was discussed by Adelman and Haftka (1986). They state, "The effectiveness of
using this approach (equations 2.10 and 2.11) is still in doubt with positive results being
obtained by Schmit and Chang (1984) and negative results being obtained by Barthelemy
and Sobieski (1983 a)". We feel that the positive results that were obtained by Schmit and
Chang are due to problem linearity and the changes in the active set that they encountered
being case 1 and case 2 changes. We feel that the negative results obtained by Barthelemy
and Sobieski are due to nonlinearity of the problem and also a case 3 change in the active
set taking place. As we will see later in this report, the consequences on sensitivity

derivatives of case 3 changes in the active set are often much more severe than case 1 and
case 2 changes.

2.2.3. An Example of Case 1 and 2

The effect of a constraint entering or leaving the active set (Cases 1 and 2) can best
be demonstrated by a simple example from Vanderplaats and Yoshida (1985).

Minimize f(x) = 2x;2 - 2x1p + p2 + 4x1 - 4p (2.13)

subject to: g1=4p+x120 (2.14)
The Lagrangian will be

L(x,u) = 2x12 - 2x1p + p2 + 4x1 -4p - u1(4dp + x1) (2.15)

for p = 0, the optimum is f(x*) =0, x;* =0, g; =0, and u; = 4.

This example will illustrate a constraint leaving the active set (case 2) as p increases.
The same example can be used to illustrate a constraint entering the active set (case 1) if we
use a different starting value of p.

To demonstrate the methods we have talked about, we will calculate the sensitivity
estimates using four representative methods: the first and second order Kuhn-Tucker
method, and first and second order extended design space method. We will conclude with
a comparison of the various methods used to solve the problem.

To solve for the sensitivity by Kuhn-Tucker equations we use equation (2.6) to
provide the following system of equations
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4 -1 P 2
[1 % 1} 55 =[] (2.16)
p.
which yield
dxy _
3?__4 2.17)
up
'gp—— -18 (2.18)

From equation (2.7) we can determine the sensitivity of the objective function with respect

to the parameter p to be,
df of ofT ox; _ _
dp=dptoxy dp - ArAH=-20 219

The active set will change when the Lagrange multiplier of the constraint goes to
zero, which can be estimated by equation (2.10)

_-u 4
p= . T3 0.2222 (2.20)
(o

therefore we are assured of reasonable results for extrapolations for which Ap less than
0.2222.

For example, a linear approximation by equation (2.8) to estimate the value of the
new optimum produce
fpew = * + Ap%: 0 + Ap(-20) = -20Ap (2.21)
A quadratic estimate of the new value of the objective function can be made by

evaluating the following equation found in Fiacco (1983), McKeown (1980 b), and
Sobieski and Barthelemy (1983)

d_zt”__ﬂd__‘_ d2L ax1+au1%&1_
dp2  op2 ' Ox10p op = Op Op

which produces d2f/dp2 = 82. Using the quadratic estimate for the value of the objective

(2.22)

function we obtain

2
few = £* + Ap%+ 0.5Ap§-}-)§Ap =-20Ap + 41Ap2 (2.23)

The same predictions can be made by Vanderplaats' extended design space
algorithm. We begin by formulating the following direction finding problem for decreasing
values of p, where x3 represents the parameter p, and x3 is an additional variable to ensure
that p has the required sign.

minimize 4xj - 4X3 - ¢ X3 (2.24)
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subject to: x1+4x9220 (2.25)
-x2-x320 (2.26)
1- (x12+x92)=20 2.27)

For ¢ = 1000, the solution is x| = .970142, xp = -.242536, x3 = .242536 which
yields the following estimates of the sensitivity derivatives

df

$= -20 (2.28)
dx;

E_ 4 (2.29)

For increasing values of p we obtain the following subproblem

minimize 4x1 - 4x2 - ¢ X3 (2.30)
subjectto:  x1+4x22=20 (2.31)
x2-x320 (2.32)

I- (x12+x92 )20 (2.33)

When this problem is solved, the resulting sensitivities are sensitive to the value of

the parameter ¢. The solution for several values of c are presented below in Table 2.1.

Table 2.1 The effect of "c" on EDS sensitivity

variable ¢=1000 ¢=500 c=100 c=10 c=1.0 c=0.0
X1 -0.398E-2 -0.79E-2 -0.388E-1 -0.2763 -0.624 -0.707
X2 0.99999 0.99996 0.99924 0.9611 0.9611 0.707
X3 0.99999 0.99996 0.99924 0.9611 0.9611 0.707
df/dp -4.016 -4.0316 -4.155 -5.150 -7.196 -8.0 .

From this table it is clear that the choice of ¢ will effect the sensitivity derivatives. For

demonstration purposes ¢ = 10 was chosen, this yielded the following sensitivity
derivatives.

df

= -5.1502 (2.34)
dxy

D -.28756 (2.35)

Vanderplaats and Yoshida (1985) report that the value of ¢ has little effect on the
EDS algorithm. However Vanderplaats and Cai (1987) report that after further research the
value of ¢ will effect the accuracy of the EDS procedure.

Using Vanderplaats second order extended design space algorithm provides exact
answers for the sensitivity for this problem.
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Figure 2.1 illustrates the accuracy of various methods. We can see that when the
active set changes at Ap = 0.222 the predictions become less accurate.
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Figure 2.1 A plot of various optimal values of f with respect to p

Figure 2.2 illustrates the location of the optimum value of x1 as a function of p, as
predicted by various algorithms. When the active set changes there is a discontinuity in the
rate of change of the optimum value of x with respect to p (i. €. dx1/dp is discontinuous at

the point).
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Figure 2.2 A plot of various optimal values of x1 with respect to p

From figures 2.1 and 2.2 it is possible to draw some conclusions about the relative
performance of the four different methods that were used to obtain sensitivity information.
Using the first order Kuhn - Tucker method we see that the solution follows the inequality
constraint in both the positive and negative direction. The linear estimate of the new value
of x1 is accurate for small changes in p less than 0.2222. But for values of p greater than
0.2222, the active set has changed and large errors in the predictions are introduced. This
is also true for the linear prediction for the value of the objective function.

The second order Kuhn - Tucker estimate of the value of the objective function is in
exact agreement in the region where the active set remains the same, as seen in figure 2.1.
However after the active set changes the predicted value of the objective function is a poor
predictor of the actual value of the optimum.

The first order extended design space provides the same results as the first order
Kuhn-Tucker sensitivity for decreasing values of p. For increasing values of p we see that
the search direction changes. This approximation appears to overcome the constraint
leaving the active set, but it is a poor predictor of the actual value of the optimum for small
variations in p. For other values of the parameter "c" we will obtain similar values for the

sensitivity derivatives.

The second order extended design space provides the exact values of the locations
of the optimum value of the objective function. This is because the approximating problem
that is formulated is the same as the original problem.

With this simple example we have demonstrated the effect of a constraint leaving
the active set on the algorithms for estimating parameter sensitivity. We can see from this
example that, as we might anticipate, usin g second order estimates can produce more
accurate extrapolations. In fact, only the second order extended design space algorithm
provided good results after the constraint left the active set. However its usefulness is
diminished by the need for second derivatives which can be computationally expensive to
obtain.

2.2.4. Example of Case 3

Recall, that Case 3 is characterized by the adding of a new constraint to the active
set and the gradients of the active constraints become linearly dependent. When the
gradients of the constraints are linearly dependent the Lagrange multipliers will not be

uniquely determined and the Kuhn-Tucker optimality conditions cannot be uniquely
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verified. This also results in a discontinuity in the Lagrange multiplier sensitivities.

When the constraint gradients become linearly dependent for a value of one of the
parameters it is assumed that this is only a temporary condition. If the user is interested in
the effect of changing the parameter on the optimum then this information can be obtained
on either side of the singular point.

This behavior is demonstrated in the following example

minimize: f=x12+(P-1)2 (2.36)
subjectto: g1=3x1+2P-1020 (2.37)
g2=2x1+3P-1020 (2.38)

When P = 2, the minimum £* = 5 occurs at x1* =2. At this point , both constraints are
active, and the gradients of the constraints are not linearly independent. The Lagrange
multipliers will be in the family

up,uz e {3ur+2u=4,u; >0,uz>0} (3.39)

At this point, df*/dp, ox*/dp and du/dp can not be uniquely determined. Results
for these derivatives can be developed if we consider positive and negative changes in p
separately on either side of this degenerate point which we shall indicate by ox/dp+ for
increasing values of p and dx/dp- for decreasing values of p.

Figure 2.3 presents the sensitivity plots for this problem. Figure 2.3 (a) and (b)
represent the first order predictions of the new values of the Lagrange multipliers for this
problem. For this problem the linear predictions agree with the optimum Lagrange
multipliers. There is a discontinuity at Ap = 0.0, therefore there will only be directional
derivatives for these values. Figure 2.3 (c) represents linear predictions of the new value
of the objective function. Notice again that there is a discontinuity in the slope of the
prediction and we can not determine df*/dp for Ap = 0. Therefore df*/dp will not exist for
this value of p. Figure 2.3 (d) represents the predicted location of x1 and we notice the
same situation as we have for df*/dp.
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Figure 2.3. A comparison of the Sensitivity of a problem with a Linear Dependence in the
Constraint normals

2.3. SUMMARY

Sensitivity analysis is now routinely used in linear programming (Falk and Fiacco
1982) and most linear programming algorithms provide modules for the calculation of
sensitivities. This has not been the case for applications of nonlinear programming. The
most common use of sensitivity derivatives has been in the area of structural optimization
and in work done for decomposition methods. Some of the reasons for this may be due to
a lack of understanding about how to perform sensitivity analysis for nonlinear problems,
or to a lack of established procedures and supporting software that make the analysis more
readily available to the average user. The largest contributor to its lack of use is probably
the difficulty involved in implementing the current theory and methods.

An assessment of the methods discussed in Section 2.1 and demonstrated in the
examples in Section 2.2.4 leads to the following conclusions about the current state of the
art of parameter sensitivity analysis:

1. The Kuhn-Tucker sensitivity equations (2.6) accurately define the desired
sensitivities assuming no changes in the active constraints. To implement these
equations, however, requires second order information about the Hessian of the
Lagrangian, and the change in the gradient of the Lagrangian with respect to the

parameter. Both of which are difficult to obtain reliably for all but a few special
cases.
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2. The Extended Design Space (EDS) method provides sensitivity information
without the need for the second order information required of the Kuhn-Tucker
method. However, the sensitivity estimates are effected by a choice of a
formulating parameter ¢, and may not give the same directions as those obtained
from the Kuhn-Tucker method.

3. Changes in the active constraint set will effect the accuracy of any of the
methods and may limit the region upon which extrapolations to the design can

be relied upon.
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3. New method for Estimating Parameter Sensitivity

In this chapter a new method for estimating parameter sensitivities based on the
Recursive Quadratic Programming(RQP) method is described. We begin with a brief
description of the RQP method and the advantages it provides for estimating sensitivities.
Next, we present the RQP based algorithm for estimating parameter sensitivity that exploits
the advantages of the RQP method discussed in the previous section. This is followed by a
comparison of the new method with existing methods based on the type of information that
is being produced and the number of function evaluations required. Finally, a discussion
is presented of potential problems that may be encountered with the new RQP sensitivity
method.

3.1. RQP METHODS

The RQP method has been on the forefront of recent research in optimization
algorithms and has been emerging as one of the most efficient methods available for
solving small to medium sized, general nonlinear programming problems (equations 1.1-
1.6). State of the art RQP methods have been developed by many researchers, such as,
Powell (1983), Schittkowski (1984), Gill, Murray and Wright (1986) and Bartholomew-
Biggs (1986,1987) to name a few. The algorithm has been tested against other general
nonlinear programming algorithms by Schittkowski (1980), Ecker and Kupferschmid
(1984), Belegundu and Arora (1985). The results of these tests have shown the RQP
method to be one of the most efficient algorithms available for the solution of nonlinear
programming problems.

All RQP methods use the same basic strategy of linearizing the constraints and
approximating the Hessian of the Lagrangian to form a quadratic programming (QP)
subproblem. The QP subproblem is then solved for the search direction, s, and a new
estimate the Lagrange multipliers of the constraints. The QP subproblem has the form

Minimize 1/2sTBs + sTVf (3.1)
subjectto VhTs +h =0 (3.2)
VgTs +g2>0 (3.3)

where B is an approximation to the Hessian of the Lagrangian which is normally
constructed by variable metric methods. The Lagrange multipliers of the constraints for the
original problem (equations 1.1-1.6) are estimated by the Lagrange multipliers of the
constraints in the QP subproblem (equations 3.1-3.3). The search direction s is then used

to calculate a new estimate of the optimum
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xit+l = xit + s (3.4)
where o is determined by minimizing a line search penalty function P of the following

general form,

P(x,u,v,R) = f(x) + RxQ(h,g,u,v) (3.5)
where Q represents some combination of the constraints and the Lagrange multipliers. The
penalty function attempts to assure that both the objective function and the violation of the
constraints are reduced. As the method converges, the optimal step length o generally
approaches 1.

RQOPT, a typical RQP algorithm, was used in our research. A summary of the
algorithm that is used by RQOPT is presented here, a full description of RQOPT can be
found in the users manual (Beltracchi and Gabriele 1987 a), or Beltracchi (1985), Gabriele
and Beltracchi (1986,1987 b). There were several modifications that were made to RQOPT
for this work and these will be discussed in section 4.1 of this report.

Given x9
An Approximation to H
and algorithm parameters

1. Define the Active Set

2. Calculate the Gradients and
update the Hessian Approximation

[ 3. Solve the QP Subproblem |

[4. Find the intial step length |

| 5. Conduct the Line Search |

| 6. Update Penalty Parameters |

l Goto Step 1 J

Figure 3.1 Flow Chart for RQOPT

Figure 3.1 shows the basic steps that are used by the RQOPT program. The
RQOPT algorithm begins with an initial estimate of the location of the optimum and several
algorithm parameters that have been set by the user. The first step of the algorithm is to
identify the active constraints, it is important that the proper constraints are chosen to be in

the active set as this can effect the rate of convergence of the algorithm and, for our
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purposes, the approximation of the Hessian of the Lagrangian. Algorithm parameters are
available to allow the user to control which constraints are considered active during the
course of the optimization.

The second step is to calculate the gradients of the objective function and the
constraints that are in the active set and then update the approximation of the Hessian of the
Lagrangian. The update of the Hessian is performed using the BFS variable metric update
with modifications specified by Powell (1977).

The third step is to solve a quadratic programming subproblem (equations 3.1-3.3).
The QP subproblems generated by RQOPT are solved by OPTQP, a special implementation
of the reduced gradient method. If the subproblem has no feasible solution, the active set is
redefined by dropping constraints from the active set until a feasible subproblem can be
found.

The line search for the next point xit*1 makes up the fourth and fifth steps of the
algorithm. An initial step size for the line search is determined in the fourth step such that
constraints not in the active set are not excessively violated. The line search is performed in
the fifth step, and if a step of o = 1 satisfies the line search criteria, then that step is taken
and the line search ended.

The sixth step updates the penalty parameters used in the line search, and the
Lagrange multiplier estimates. We then return to start another iteration.

There have been several different variants of the RQP method proposed. Some of
the variants are discussed in Beltracchi (1985). The major differences in RQP algorithms
are in the form of the line search objective function (equation 3.5) and the formulations of
the QP subproblem (equations 3.1-3.3) that are used. Research continues on these areas
but no one formulation has yet to prove itself clearly superior.

Some of the penalty functions that have been proposed for (3.5) are a 1; exact
penalty function (Fletcher 1984, Powell 1987), a 1 quadratic loss penalty function
(Bmholoméw-Biggs 1980) or an augmented Lagrangian (Chen,Kong and Cha
1987,Bartholomew-Biggs 1985, 1987). The penalty function's parameters are adjusted
after each iteration, and how the parameters are updated effects the convergence of the
method.

There are two basic philosophies for forming the QP subproblem for RQP
methods, the inequality constrained (IQP) formulation and equality constrained (EQP)
formulation. The most common is the IQP approach which uses a subproblem of the form

of equations 3.1-3.3. The EQP approach linearizes only a subset of the inequality
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constraints and considers these as equality constraints in the subproblem(i.e. equation 3.3
is considered to be an equality constraint). A discussion of the advantages and
disadvantages of the IQP and EQP subproblem formulation can be found in (Bartholomew-
Biggs 1987,1986,1982, Zhou and Mayne 1985, Schittkowski 1983, Murray and Wright
1982, or Powell 1978).

Although the method does perform well, it does have some disadvantages. In
general, the method produces a series of infeasible points while approaching the solution
which may pose a problem for some problem formulations. RQP methods are also
sensitive to variable and objective function scaling and no good scaling algorithms have
been proposed. Finally, the best penalty function or algorithm for updating the penalty
parameters for the line search is still a subject of a great deal of research in these methods.

On the plus side, the following advantages have been attributed to the method. In
terms of number of function evaluations, this method appears to be one of the most
efficient methods available. This has been demonstrated in any of the published
comparison studies in which codes for these methods participants. The method does not
require a feasible starting point which means there is no special phase 1 search employed as
in the GRG method or the feasible direction method. Although, as mentioned above, the
method is sensitive to variable and objective function scaling, it is not sensitive to
constraint scaling. Finally, the RQP method provides an estimate of the Hessian of the
Lagrangian, which can be useful for other purposes, and it is very efficient at locating an
optimum when the starting point is close to the true optimum. Both of these last
advantages will be exploited in the next section which describes a method for sensitivity
estimation based on the RQP method.

3.2. PROPOSED ALGORITHM FOR PARAMETER SENSITIVITY

In reviewing the current methods for sensitivity analysis in chapter 2, we recall that
to employ the Kuhn-Tucker sensitivity equations required second order information about
the Lagrangian. For most engineering problems this type of information is often not
available in closed form, and estimation techniques would be prone to truncation and
numerical errors. Therefore, the application of these equations to a broad spectrum of
engineering applications is limited.

One proposal mentioned in chapter 2 to circumvent these problems was suggested
by Armacost and Fiacco (1974) and McKeown (1980 b). Their proposal to estimate the

sensitivities without estimating the higher order information was given in equations 2.4 and
2.5,
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df* _f(x*,p + Ap) - f(x*, p - Ap)
dp 2 Ap

ox* _x"(p + Ap) - x*(p - Ap)

dp — 2 Ap
These equations represent the use of differencing techniques to estimate the sensitivities,
where the values f(x*,p + Ap), x*(p + Ap), etc. are determined by reoptimizing the

problem for the new values of the parameter. For most algorithms, particularly penalty
function based methods, the reoptimizations would be a non-trivial task requiring a
considerable number of function evaluations. However, this is the type of problem where
the RQP method is considered to be very effective. The goal of the new algorithm is to
exploit the strengths of the RQP method to estimate sensitivities by these differencing
techniques.

The RQP method possesses two characteristics that we felt can be exploited for
determining parameter sensitivities: (1) an approximation to the Hessian of the Lagrangian
is developed, and (2) if this approximation is exact (or close) then the RQP method quickly
and efficiently solve the reoptimization problem used in the difference equations.
Essentially, if we can develop good Hessian approximations, the RQP method is equivalent
to applying Newton's method to solve the Kuhn-Tucker conditions for the perturbed
problems which should require only 1 or 2 iterations of RQP!. The small number of
iterations, coupled with the fact that the RQP method should require only a one step line
search, should allow the reoptimizations to occur without the need for many function

evaluations.

Based on the above arguments, we propose the following procedure to calculate
parameter sensitivity derivatives (for cases where there are no changes in the active set for
small variations in the paramters?2).

Step 0. Given an optimal solution x*, f*, u*, an active set of constraints, and an
approximation to the Hessian of the Lagrangian, all achieved by convergence
of the RQP method.

(the * notation is used to denote optimum values)

Step 1. Perturb the fixed parameter pj to pi* = pi0 + Ap; where Ap; is some small
perturbation to pj

Step 2. Perform one complete iteration of the RQP method to find:
f+ the estimated value of the optimum objective function
x+ the estimated value of the optimal of the design variables

1 We can expect only one or two iterations of RQP if we can adequately approximate the perturbed problem
with a quadratic function. Due to the small region of interest, a quadratic approximation should be good.

2 At points where the active set changes then modifications discussed in chapter 6 must be used to calculate
directional derivatives.
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u* the estimated value of the optimum Lagrange multipliers

gjt J € Active set
(as predicted by the RQP method for p; = pit+)

Step 3. Perturb the fixed parameter p; to p;” = pi® - Ap;

Step 4. Perform one complete iteration of the RQP method to find:
f- the estimated value of the optimum objective function
x~ the estimated value of the optimal of the design variables
u- the estimated value of the optimum Lagrange multipliers
gj" j € Active set
(as predicted by the RQP method for pj = p;i?)

Step 5. Obtain estimates for the sensitivity derivatives from the following central
difference approximations

df* ft-f-
& (3.6)
dp — 2Ap
ox* xt-x-

= 3.7
9P 2Ap (
ou* ut-u-

= (3.8)
9P~ 2Ap

Step 6. Estimate the sensitivity of the inactive constraints by

dgi* _gi* - g
dp 2Ap

j € Active set (3.9

In addition to the algorithm described above, the following variants of the basic
algorithm are also proposed

1. Forward differencing, For this variant we would omit steps 3 and 4 and then
use a forward difference approximation (equation 3.10 instead of equations 3.6-
3.9) to approximate the derivatives

oa* qt -
=4 -9 3.10
D A (3.10)

where q can represent f*, x, u, and the inactive constraints. We may want to
use this formulation because it requires less function evaluations than the central
difference approximation. However, the forward difference approximation is
more susceptible to roundoff and truncation errors and requires a more accurate
optimum to yield good sensitivity derivatives.

2. Forward differencing using 2 iterations of the RQP method. This variant is
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similar to variant 1, but we would perform 2 iterations of RQOPT in step 2. This
will yield a more accurate estimate of the optimum of the perturbed problem.
When we use this option we can also update the approximation to the Hessian of
the Lagrangian, or adjust the perturbation Ap to obtain a more accurate estimate
of the derivatives.

3. Central differencing using 2 iterations of the RQP method. This variant would
perform two iterations of RQOPT in steps 2 and 4 of the basic algorithm. As in
variant 2 we can update the Hessian approximation during each iteration or adjust
the perturbation Ap to obtain a more accurate estimate of the derivatives. This

variant is the most computationally expensive of the proposed variants.

When there are many parameters that the user needs to obtain sensitivities for then
the user may want to use variant 2 or variant 3 to calculate the sensitivities for the first few
parameters. This will allow a more accurate estimate of the Hessian of the Lagrangian to be

constructed. After an accurate estimate of the Hessian of the Lagrangian is built, the user
should switch to either the baseline or variant 1 to obtain the sensitivities of the remaining
parameters. The Kuhn-Tucker sensitivity equations may also be used with the Hessian
approximation, after a good estimate of the Hessian of the Lagrangian is built. However
the Kuhn-Tucker sensitivity equations also require dVxL/dp be calculated and this term
may be subject to numerical noise because VxL = 0.

3.3.  COMPARISON TO EXISTING METHODS

This section provides a derivation that indicates the performance that is expected
from the new sensitivity algorithm. This section also presents a comparison between the
RQP based method and two existing methods described in chapter 2 based on the number
of function evaluations required to estimate the sensitivities.

3.3.1. Demonstration of Equivalence of New Method to Kuhn-Tucker Method

This section will show that the finite difference approximations obtained by the
proposed method are in fact equivalent to the sensitivities obtained by solving a modified
set of Kuhn-Tucker sensitivity equations. The modification of the Kuhn-Tucker sensitivity
equations involves replacing the Hessian of the Lagrangian with the approximation B,
obtained from the RQP method.

The following assumptions are made for this derivation; no equality constraints are
present, the base optimal point is stable3, and the gradients are continuous. The derivation

3 A stable point is defined as a point where the acitve set does not change for small variations in the
parameters

26



in the presence of equality constraints does not change too much but the equality constraints
were left out to simplify the notation. If the base point is not stable then this derivation can
be used to find directional derivatives; this will be discussed at the end of this section. If
the gradients are not continuous then we cannot even be assured of an optimum point since
the assumption of continuity is also made for the derivation by the Kuhn-Tucker method.

We begin by restating the Kuhn-Tucker Sensitivity equations

2 ox’] [ aV,L
[V"L -ng} gg + aEP -0 (3.11)
ngT 0 Tp gg

We strive in this derivation to show that the proposed method is equivalent to estimating the
sensitivities using modified version of equation (3.11) that replaces ViL with B obtained

from the RQP method. If this is the case, then we can anticipate the kind of accuracy to
expect and where the possible sources of error will result.

If we examine the equations (3.6-3.8), used by the proposed RQP sensitivity
method we see that these provide finite difference approximations to the sensitivity
derivatives of the objective function, design variables, and Lagrange multipliers with
respect to p;. The derivatives are defined by the following

df* lim  (P*(x*+Ax,p0+Ap) - f*(x*,p0) (3.12)
dp Ap—-0 Ap ) .
ox* lim (x*(pO+Ap) - x*(p%)

Tp  4p-0 ( Ap ) o
Ax = 9% Ap (3.14)
ou* lim (u*(pO+Ap) - u*(p%) (3.15)
dp  ap-0 Ap ‘

where pY represents our base point.

The RQP subproblem for the simplified case where the active constraints remain
active and there are no equality constraints can be written as

min 1/2 sTBs + sTV,f (3.16)

subject to sTV,g; + gi=0 je Active Set (3.17)

where B is the approximation to the Hessian of the Lagrangian and the inequality
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constraints gj are considered as equality constraints.

If we assume# a step length of o = 1 is used in the line search (equation 3.4) we

can rewrite equation 3.4 in terms of X' - X as

s=x'-X (3.18)
where x' is the new estimate of x*. Substituting equation 3.18 into equations 3.16 and
3.17 we obtain the following subproblem which is minimized with (x' - x) as the design
variables

min 1/2 (x'-x)TB(x"-x) + (x'-x)TV«f(x,p + Apj) (3.19)

subject to (x'-x)TVygj(x,p + Apj) + gj(x,p + Apj) =0 j e Active Set (3.20)
We can now state the optimality conditions for the subproblem represented in equations
(3.19-20) as

B(x'-x) + Vxf(x,p + Apj) - u'Vxgj(x,p + Apj) =0 (3.21)
(x'-x)TVxgj(x,p + Apj) + gj(x,p + Apj) =0 j € Active Set (3.22)
Here u' represents the estimated value of the Lagrange multipliers at the new optimum.

Now we substitute into equation (3.21) the following definitions of zero

ViL(x,p0) = 0 = V4f(x,p0) - uVyg(x,p0) (3.23)
uVxg(x,p%+ Ap) - uVxg(x,p¥+ Ap) =0 (3.24)
This will yield

B(x'-x) + Vxf(x,p0 + Ap) - u'Vygj(x,p%+ Ap) - (Vxf(x,p0) - uVxg(x,p0)+
uVyg(x,p0+ Ap) - uVyg(x,p%+ Ap) =0 (3.25)
Rearranging we obtain

B(x'-x) - u'Vxgj(x,p%+ Ap) + uVxg(x,p0+ Ap) +
(Vxf(x,p0 + Ap) - uVyg(x,pY + Ap)) - (Vxf(x,p0) - uVxg(x,p%) =0 (3.26)
Rearranging further and writing in terms of the Lagrangian function we obtain

B(x'-x) - (u' - u)Vxgj(x,p%+ Ap) + VxL(x,u,p%+ Ap) - V4L(x,u,p0) = 0
(3.27)

Now we will divide equation (3.27) by Ap and take the limit as Ap goes to zero to

4 A common assumption for RQP methods
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obtain

lim B(x'-x) - (u' - w)Vgi(x,p%+ Ap) + VxL(x,u,p0+ Ap) - VxL(x,u,p?) _

Ap—0 Ap 0
(3.28)
Using the additive and multiplicative properties of the Limit function we obtain
lim ,x'-xy lLm '-u\lim (v 0
B o0 (E) " Aps0 (T) Ap—0 (Vxgj(x,p%+ Ap)) +
i 0 - 0
lim (VxL(x,u,pY+ Ap) - V4xL(x,u,pY) -0 (3.29)
Ap—-0 Ap

Now we can use the definition of a derivative of some function h with respect to some variable p

dh _lim h(p+Ap)-h(p)

I Apod Ap (3.30)
Applying the definition of dx/dp, du/dp to (3.29) we obtain
dx  du lim dVxL(x,u,p0)
- . 0 X =
BTp rry Ap_)()ngj(x,p + Ap) t———— = 0 (3.31)

If we use the standard assumption that the functions are twice continuously differentiable
we can state

ap—0 VxEi(XPO + Ap) = Vxgj(x,p%) (3.32)
<snd now substituting equation (3.32) into equation (3.31) we obtain

ox ) du  dVxL(x,u,p0)
Ba; - Vxgj(x,p0) >y +T =0 (3.33)

The equation above (equation 3.33) represents the first part of the Kuhn-Tucker sensitivity
equations with the approximation B instead of the Hessian of the Lagrangian.

The next step in this derivation is to examine equation (3.22) in terms of p? + Ap

we obtain

(x-x)TVyg;x,p% + Ap) + gj(x,p% + Ap) =0 j e Active Set (3.34)

Now we can subtract gj(x,p) = 0 from equation (3.34) to obtain

(x'-x)TVxgj(x,p0 + Ap) + gj(x,p® + Ap) - gj(x,p%)=0 je Active Set (3.35)

If we divide equation (3.35) by Ap and take the limit as Ap goes to zero we can write
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lim ((X'-X)Tngj(x,p‘_’ +4p) , gj(x,p%+ Ap) - gj(x,p?)

=0 (3.36
Ap—-0 Ap Ap ) ( )

Using the additive and multiplicative properties of the limit function we obtain

Vxgj(x,p% + Ap) *

lim (x'-x) , lim (gj(X,po + Ap) - gj(X,pO))=O

Ap—-0 Ap-0 Ap

Ap-0 Ap

(3.37)
Again using the definition of a partial derivative of (equation 3.30) and we obtain from
equation (3.37)

lim x _ og;
aps0 VABIPO +Ap) x 5% +581=0 (3.38)

Using the results in equation (3.32) we obtain
ox  dgj
(x n0 =
Vgi(xp0) * 55 + 3%1- 0 (3.39)
Which represents the second part of the Kuhn-Tucker sensitivity equations.

Now equations (3.33) and (3.39) can be assembled into matrix form to yield

B V.g g_X_ V4L

- plL|op |_

I:ngT Ox ] gg + ggp =0 (340)
p p

Equation 3.40 is the same as equation 3.19 with the exception that equation 3.40 uses the
approximation, B, of the Hessian of the Lagrangian in place of, ViL, the true Hessian of

the Lagrangian. Referring to (3.40) as the modified Kuhn-Tucker equations, we see that
the proposed method is principally a difference approximation to the modified Kuhn-
Tucker equations. This implies that if B is a good approximation of the Hessian of the
Lagrangian, and a proper choice can be made for the difference parameter that minimizes
truncation and roundoff errors, then we can produce sensitivity derivatives without the
need to obtain or estimate the second derivatives required of the Kuhn-Tucker method.

Several examples were tested to see if the sensitivity derivatives estimated by the
RQP method with one iteration converged to the value of sensitivity derivatives estimated
by the Kuhn-Tucker sensitivity with the approximate Hessian. From these examples we
observed that the sensitivity derivatives delivered by the new RQP algorithm are close to
the derivatives approximated by the Kuhn-Tucker method with the Hessian approximation.
One of these examples is presented here to show this agreement.
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Test problem 2 (which is described in the appendix) is used to demonstrate the
equivalence of the new method to the Kuhn-Tucker method. The starting point of x0 =
(1.1,1.1,1.1) was used. RQOPT(with the BFS update and HO = I) solved the problem in
one iteration and yielded the following approximation to the Hessian matrix>

322]

H =[2 32
approx 553

If we use this Hessian approximation to solve for the sensitivity of parameter 1 by equation
(3.40) we will obtain the following system of equations

_axlj
9p1
322-1 ?rxz_ -12
232-1 P1 5
[223-1} dx3 +[o]=0 (3.41)
1110 op1 1
dui
L dp1—
the solution of these equations yields
;%XT = (9.33333,-7.66666,-2.66666) (3.42)
Jdu
o1 - (-4.66666) (3.43)

The RQP based sensitivity algorithm calculated the following sensitivity derivative
approximations.

% =(9.33333,-7.66666,-2.66666) (3.44)

gﬁ = (-4.66666) (3.45)

The above derivatives were calculated using the RQSEN program (described in section 4
and the appendix of this report) with a perturbation of Ap = 0.0001 (using central

differencing, equations 3.7,3.8) and one iteration of RQP to solve the perturbed problems.

If the base point, pY, is unstable (degenerate) we can use a similar derivation to
calculate directional derivatives, which will be useful for predicting the sensitivities of the
design variables and Lagrange multipliers. The use of directional derivatives will be
discussed in section 6.

5The Hessian approximation for problem 2 is not close to the true Hessian of the Lagrangian ( given in the
appendix of this report). This is because the starting point was chosen to produce a poor approximation so
we could clearly indicate the performance of the RQP sensitivity method in comparison to the Kuhn-Tucker
sensitivity method with the approximate Hessian from RQOPT
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3.3.2. Performance Comparison with Other Methods

This section compares the RQP based method to two of the methods discussed in
chapter 2; the Kuhn-Tucker method, and the extended design space (EDS) method. The
comparison is based on Table 3.1 which examines the number of function evaluations
required by each method to calculate parameter sensitivities df*/dp, dx*/dp and du*/dp
(assuming that when the optimum is found that the Kuhn-Tucker conditions have been
checked, this means that VL and the Lagrange multipliers are known before the
sensitivity analysis is performed). It is assumed that the objective function and constraints
are interrelatedS. It is also assumed that problem linearity or problem form are not
exploited in calculating parameter sensitivities.

The first row of Table 3.1 represents the methods used in this comparison. The
second row represents the number of function evaluations required to calculate the
sensitivity derivatives for the first parameter. Subsequent parameters may require fewer

evaluations for some methods.

The first column of Table 3.1 represents the number of variables present in the
problem. The second column represents the amount of work required to solve for the
sensitivities using the Kuhn-Tucker sensitivity equations. The third and fourth columns
represent the number of function evaluations required by the EDS algorithm. Column 3
represents the first order method and column 4 the second order method. The fourth
column, RQP 1, indicates that forward difference approximations were used to calculate the
gradients. The fifth column RQP 2, also uses forward difference approximations but 2
iterations of RQOPT are allowed during the reoptimization. The fifth column RQP 3
represents the amount of work required for the base line algorithm using central difference
approximations. The sixth column RQP 4 represents using central difference
approximations with 2 iterations of RQOPT.

If the objective function sensitivity is calculated by equation 2.12
(df*/dp = of/dp - u dg/dp) then assuming that objective and constraint information can
both be obtain in one call, only one extra function evaluation is required to determine of/dp
and dg/dp. However, if one wants the design variable and Lagrange multiplier sensitivity
then some other equations must be used.

6The value of the objective function and all of the constraints are calculated by one subroutine
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n Kuhn-Tucker EDS (1t) EDS2d) RQP1  RQP2  RQP3 RQP4

"2—2+ 32_n+ 1 1 Q%LZ_,_ :iﬁnz_“ll n+1 2n+2 2n+1 4n+2
4 1 5 2 4 3 6

6 1 9 3 6 5 10

10 1 14 4 8 7 14

15 1 20 5 10 9 18

21 1 27 6 12 11 22
66 1 77 11 22 21 42
136 1 152 16 32 31 62
231 1 252 21 42 41 82

861 1 902 41 82 81 162

RQP 1 uses forward difference approximations and one iteration to solve the perturbed problem
RQP 2 uses forward difference approximations and two iterations to solve the perturbed problem
RQP 3 uses central difference approximations and one iteration to solve the perturbed problem
RQP 4 uses central difference approximations and two iterations to solve the perturbed problem

Table 3.1 Comparison of Various Algorithms for use in sensitivity analysis

The following observations can be drawn from this table.

1.

. For the RQP 1 algorithm (forward differencing) is the most efficient of the RQP

. The number of function evaluations for the RQP 2 algorithm (forward

For the Kuhn-Tucker sensitivity equations, most of the work in finding the
parameter sensitivity is involved in the calculation (by finite differences) of the
Hessian of the Lagrangian. However, after the first parameter sensitivity is
determined the cost of evaluating successive sensitivity derivatives is reduced to
(n+1) extra function evaluations.

. For the first order EDS algorithm, the work required to calculate the parameter

sensitivity does not increase with problem size. However, this algorithm will
not deliver du/dp and this algorithm may not be able to find the correct value for
dx/dp. This will mean that df*/dp will also be inaccurate with this method. If
the problem is fully constrained the accuracy of dx/dp is better but the method
may still provide inaccurate derivatives.

. For the second order EDS algorithm most of the work is in the calculation of the

Hessian of the objective function and the Hessian of the constraints. The work
involved for calculation of successive parameter sensitivities only requires
approximately n+2 extra function evaluations. This algorithm requires the
solution of a quadratic approximating problem for every new value of the
parameter supplied by the user.

methods proposed and seems to be much more efficient than the Kuhn-Tucker
algorithm. The work required to calculate successive parameter derivatives is
constant (n+1 function evaluations). This algorithm will perform well when B is

a good approximation and the perturbation Ap is properly chosen.

differencing and 2 iterations of the RQOPT algorithm) grows linearly. The work
required to calculate successive parameter derivatives is constant (2n+2 function
evaluations). The work for calculating successive parameter sensitivities may be
reduced because the Hessian approximation will improve after each parameter
sensitivity derivative is approximated, which will eventually reduce the amount
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of work required to solve the perturbed problem.

6. For the RQP 3 algorithm (central differencing) the work involved grows linearly
and the work for calculating successive parameter derivatives is constant (2n+2
function evaluations). An indication of nonlinearity of the sensitivity derivatives
can be indicated by checking for second derivatives of the functions as follows

d2f -.~_ f+ - 2f* + f-
dp? Ap?

(3.46)

This approximation of the second derivatives may not yield accurate results but it
may be able to indicate that there is curvature present in the problem. Another
advantage of using central differences occurs when the active set changes and
directional derivatives can be approximated.

7. The RQP algorithm with central differencing and 2 iterations of RQOPT is the
most expensive of the proposed RQP algorithms. The work required to calculate
successive parameter derivatives is constant (4n+2 function evaluations). The
work for calculating successive parameter sensitivities will be reduced if we
allow updating of the Hessian approximation during the RQP iterations, as less
work will be required to solve the perturbed problem when the Hessian
approximation is improved.

The above discussion dealt with the number of required function evaluations to
calculate the parameter sensitivities. We did not account for any of the other overhead such
as solving the QP subproblem for the RQP method or solving a quadratic approximating
problem for the second order EDS algorithm.

The overhead associated with using the Kuhn-Tucker sensitivity equations is
relatively small after the first parameter sensitivity is calculated, this is because if a
factorization (i.e. LU) is used to solve the Kuhn-Tucker sensitivity equations then the
amount of overhead becomes o(n) flops. The overhead for solving the RQP subproblems
will also be realitively small if a good implementation of the RQP method is used (i.e. a
proceedure propossed by Gill et. al. (1987) requires anly o(n) flops). The overhead for the
first order EDS method will also be relatively small. However the overhead for the second
order EDS method could be large depending on the problem.

In summary, the RQi’ based methods are competitive with the existing methods.
All variants of the RQP based method require approximately the same number of function
evaluations for small problems (n<5), but considerably less for larger problems (n>5).

3.4.  POTENTIAL PROBLEMS

One of the main issues that needs to be investigated concerns the Hessian
approximation: will the approximation converge in practice as predicted by the theory? If
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convergence has not taken place then we need to investigate how to improve the Hessian
approximation. Some modifications that can be made to obtain a more accurate Hessian

approximation are discussed in Chapters 4 and 5.

As with the estimation of any gradient by finite differences, the perturbation step
size Ap and the nonlinearity of the problem will effect accuracy of the derivative
approximation. Rules from Gill, Murray and Wright (1983) or Adelman, Haftka, and Iott
(1986) can be investigated as a means to select the step size Ap. An automated selection
proceedure for Ap should be investigated after the initial RQP sensitivity algorithm is
tested.

When using the forward difference option the choice of Ap is even more critical. If
Ap is too small and the optimum of the problem is not known exactly then when the
perturbed problem is solved we may only be seeing a better estimate of x* being found
rather than an estimate of the solution of the perturbed problem. This will cause the
derivative approximations to be inaccurate. If Ap is too large then we may only be

obtaining trend information for the problem.

All optimization programs incorporate some kind of convergence criteria that is
based on the relative change in the design variables. This stopping criteria will effect the
calculation of the sensitivity derivatives for all available methods, because there is a
common assumption that the base point is a true optimum. The central difference
approximation may be less sensitive to inexact solutions because the solution of the
perturbed problems will be of a similar degree of accuracy.

When solving the quadratic programming subproblem some type of convergence
criteria is normally used. How small this tolerance is will effect how much work is needed
to solve the subproblem (Nash 1985). During the early stages of the optimization it is not
advisable to locate the exact solution of the QP subproblem as this may be too expensive.
However once the program is in the region of a minimum the solution of the subproblem
needs to be accurate. Therefore, we expect to use a tight convergence criteria for our QP
solver during our reoptimizations.

3.5. SUMMARY

We have proposed a method and some variants based on the RQP method for
estimating parameter sensitivities which provides sensitivity estimates nearly equivalent to
the Kuhn-Tucker method. The method avoids the need for calculating second derivatives
and its efficiency is competitive with current methods. The accuracy of the method
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depends on two major pieces of information, the quality of the Hessian approximation
provided by the RQP method, and the step size of the difference parameter used in the

difference formula. Both these aspects of the method will be discussed in the following
chapters.
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4. Implementation

This chapter will discuss the implementation of the new parameter sensitivity
method described in chapter 3. The program used as the basis for testing the new method
was the RQOPT program which is an implementation of an active set RQP method
(Beltracchi and Gabriele, 1987). The discussion begins with a discussion of the
modifications made to RQOPT to perform the necessary calculations, and ends with a
description of the software system developed to calculate parameter sensitivities.

4.1. MODIFICATIONS TO RQOPT

Most of the modifications to RQOPT were concentrated in one of the major areas of
concern for the new sensitivity algorithm, the Hessian approximation. These modifications
are discussed in subsections 4.1.1 and 4.1.2. The line search of RQOPT was also
modified to yield a smoother convergence to the problem solution and this is discussed in
subsection 4.1.3. The final modification discussed in subsection 4.1.4, provided the
option of using a different variable metric update to yield a more accurate Hessian
approximation

4.1.1. Implementation of a Factorized BES Variable Metric Update

Variable metric updates have been successfully used for the past 20 years for
unconstrained optimization and have been used successfully for approximately the past 10
years for constrained optimization. Variable metric updates attempt to build an
approximation to the Hessian matrix using only first order information, and solve for the
search direction from the following equation

s =B-1Vf 4.1)
where B represents the approximation to the Hessian, Vf the gradient of the objective
function, and s the search direction of the design variables. Variable metric updates have
been provided in the literature for approximating either the inverse of the Hessian or the
Hessian itself.

Variable metric updates all have the same basic form. They begin with an
approximation to the Hessian matrix, and then update the approximation by some rank one
or rank two correction. The form of the update is normally

Bnew = Botd + vvT + wwT (4.2)
where v and w are calculated as some product of the old Hessian approximation, the last
search direction, and the change in the gradient of the objective function.

Several different forms of equation 4.2 have been proposed. The most popular
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variable metric update has been the BFS (also known as the BFGS) which was proposed in
1970 simultaneously by Broyden, Fletcher, Shanno and Goldfarb. The BFS update has
been shown to be the best general purpose variable metric update.

One of the problems associated with the BES variable metric update is that it is
effected by the problem scaling. Shanno and Phua (1978) have proposed a self scaling
version of the BFS update. Its use in a RQP algorithm was investigated by Van der Hoek
(1980). He found the self scaling variant with the second Oren-Spedicato (Oren 1974)
switch seemed to perform the best with the particular RQP algorithm that he was using.

In the mid 1970's several authors proposed updating the LDLT factors of the
Hessian approximation with a procedure that could be used to stabilize the BFS update in
terms of the numerical noise encountered in the calculation of the update. With the LDLT
update we can be assured that the Hessian approximation remains positive definite, this will
assure that the search directions that are generated from (4.1) are downhill. Additionally,
finding the search direction from equation 4.1 becomes a simple matrix calculation when
using the LDLT update

When variable metric updates are used for RQP methods it is normally preferred
that the approximation of the Hessian of the Lagrangian be updated instead of its inverse.
This is because solution of the QP subproblem requires the Hessian approximation. The
BFS variable metric update is used by most of the successful implementations of the RQP
method.

The BFS update that was used in RQOPT is defined as

#Bag)@Bgi)T  w wT

Brew = Bold 2TB g1z wly (4.3)
where z and w are defined as
Z = Xnew - Xold (4.4)
y= VXL(Xnew,Vnew,unew) - VXL(XoldaVnew,Unew) (4.5)
1 ifzTy >20.2 zTB z
— T
® ——-——zgﬁzz_ Iz},?y otherwise (4.6)
w=0y+(1-0)Bz 4.7

Where the © term in equation 4.6 and 4.7 was defined by Powell (1977) to help maintain

positive definiteness of the Hessian approximation, under normal operation @ is equal to

one. The Hessian approximation is guaranteed to be positive definite if zTw is greater than
38



zero. The Hessian approximation is not updated by RQOPT if zTw is less than zero.

For this study, the LDLT update for the BFS variable metric (defined in equation
4.3) as described by Gill and Murray (1978) was implemented (where z and w were
calculated by equations 4.5 and 4.7). This update uses several matrix transformations to
achieve a stable update. The actual update of the Hessian approximation is performed with
a procedure described by Fletcher and Powell (1974) and extended by Gill, Murray, and
Saunders (1975).

In addition to the stability of this update relative to numerical noise, as discussed
above, the LDLT update provides a convenient means for establishing a reset criteria for the
Hessian approximation. The need for a reset of the Hessian approximation is discussed in

the following section.

4.1.2 Condition Number Reset

Occasionally, due to numerical noise or a highly nonlinear problem, the Hessian
approximation may become singular or indefinite. When this happens we can no longer be
certain that the resulting search directions will satisfy the descent property that is assumed
by the RQP. The only means to recover from this situation is to reset the approximation to
some known positive definite matrix, which is generally the identity matrix. Early version
of the BFS update were reset every n+1 iterations but this is a conservative approach that
will sometimes erase good information and slow the convergence of the algorithm. The
current thinking is to use a less conservative reset criteria that is based on a condition
number estimate of the matrix with the hope that useful information built up in previous

iterations is used for more iterations and should result in better convergence.

The original versioh of RQOPT reset the Hessian approximation every time the
active set changed or every n+1 iteration. A change in the active set results in a different
QP subproblem to be solved and it was felt that the Hessian approximation would no
longer be valid. Using this conservative reset criteria would prove unacceptable if we were
using RQOPT to perform sensitivity analysis. With this reset criteria, we risk resetting the
Hessian approximation just before the optimum is reached and would be left with only a
few iterations of the method upon which to build an approximation. Thus we may have a
very poor Hessian approximation when it comes time to perform the sensitivity analysis.

The reset criteria adopted has been used successfully by several other algorithms
(Powell 1985, Schittkowski 1983, Arora and Tseng 1987). The new reset criteria resets
the Hessian approximation when the estimate of the condition number exceeds a fixed limit.
This estimate can be found by computing
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cond(H)eg = Smax | (4.8)

m
dmm
where dpjp and dmax are the smallest and largest values of the D matrix in the LDLT
factorization.

Using this reset criteria has led to a more stable update yielding faster convergence
for the RQOPT program and more accurate estimates of the Hessian of the Lagrangian.

4.1.3 Calculation of the Lagrange Multiplier Estimates

The Lagrange multiplier estimates are an integral part of building the Hessian
approximation. The value of the Lagrange multiplier estimates are used as inputs to the
variable metric update to approximate the Hessian of the Lagrangian function.

The original version of RQOPT calculated the Lagrange multiplier estimates as the
Lagrange multipliers of the constraints in the QP subproblem. This value of the Lagrange
multiplier estimate is a valid estimate of the true multipliers when a step of o = 1 is used in
the line search (Gill and Murray 1979). When this occurs, the estimates should converge

to the true Lagrange multipliers as the problem converges.

A problem can arise, however, in the first few iterations of RQOPT. At the
beginning of a search it is possible that a Lagrange multiplier estimates produced by the QP
subproblem will be several orders of magnitude larger than true value of the Lagrange
multiplier. If the line search then makes a small step (@ « 1), the large value of the
Lagrange multiplier estimate may bias the updating of the Hessian approximation in such a
way that new approximation only sees the constraint associated with the large Lagrange
multiplier. It may then take several iterations before the Hessian approximation is
corrected.

RQOPT was modified to use the following linear interpolation to update the value
of the Lagrange multiplier estimates after the line search is completed
Upew = Uold + a(ugp - Uolq) 4.9)
When a step length of o =1 is used in the line search (equation 3.4) then formula 4.9
updates the Lagrange multiplier estimates to be the estimates delivered by the QP
subproblem. This update was also used by Schittkowski (1983).

The procedure for updating the Lagrange multiplier estimates helped yield a
smoother convergence of the Hessian approximation, because we were able to more
accurately represent the Lagrangian function when we were performing the approximation
updates.
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4.1.4. SR1 update

The SR1 update is a variable metric update that does not require exact line searches
for quadratic convergence, where as the BFS update requires exact line searches for
quadratic convergence. Because the RQP method seldom performs exact line searches, it
was felt the SR1 update may be able to obtain a better approximation of the Hessian of the
Lagrangian.

A table describing the differences between the BFS and SR1 update is presented

below
Update Advantages Disadvantages
BFS Self Correcting Requires exact line searches
Stable (maintains positive definiteness)
Has a good performance history
SR1 Does not require exact line searches update may be undefined and it is not

guaranteed to maintain positive definiteness
of the Hessian Approximation. There is not
a lot of literature on the performance of this
update.

Table 4.1 A comparison of the BFS and SR1 variable metric updates

The stability of the BFS variable metric update has led to its use in almost all RQP
implementations. However Cha and Mayne (1987) report that they have tested the SR1
update and found exact convergence of Hessian approximations for quadratic functions.
Although the SR1 update lacks the stability of the BFS update, we were interested in
comparing the performance of the 2 updates in terms of the Hessian convergence. If the
SR1 update delivers better Hessian approximations than the BFS update then we will have
to further investigate methods to stabilize the SR1 update.

The SR1 update is defined as follows

(Boiay - 2)(Boigy - 2T
B =Bgld + 4.10)

where y and z are obtained from equation 4.4 and 4.5. This update is undefined when the
denominator is equal to zero. The SR1 update may be undefined even for positive definite
quadratic problems. This problem was addressed by Brayton and Cullem (1979), Cullem
and Brayton (1979).

The symmetric rank one (SR1) update was implemented in both a factored (LDLT)
and unfactored form. In our implementation if the absolute value of the denominator (in
equation 4.10) is less than some small number we use the BFS update which is described

in section 4.1.1.
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Even though the SR1 update may be undefined, it has the very nice property of not
requiring exact line searches. This is important because in the RQP method we do not
perform exact line searches, and the BFS variable metric method assumes exact line
searches. Powell (1986) clearly demonstrates the detrimental effect of inexact line searches
on the BFS method. The performance of the SR1 update for solving quadratic problems is
such that after n updates (providing that all updates are defined) the Hessian approximation
will have converged to the true Hessian. Thus we may obtain a better convergence of the
approximation of the Hessian of the Lagrangian if we are able to use the SR1 update.

Some preliminary results were obtained compaﬁﬁg the BFS and SR1 variable
metric updates and these are discussed in section 5.3.

4.2 THE CREATION OF A SYSTEM TO AUTOMATICALLY CALCULATE
PARAMETER SENSITIVITIES

In this section we provide a brief overview of the software system created for
studying parameter sensitivities. The software system is made up of three major pieces: a
problem preparation package RQCRE, the RQP algorithm using the modifications
described in the preceding section, RQOPT, and an interactive program RQSEN, that acts
as a post processor/sensitivity analysis module for the RQOPT program. The RQOPT
program was an existing program and has been documented previously (Beltracchi and
Gabriele, 1986). The RQCRE and RQSEN programs were created for this study and will
be briefly described in the following paragraphs. A more detailed discussion of these
systems is provided in the appendix.

4.2.1 The RQCRE Support System

The RQCRE program is set up to be used as an interactive tool for use with the
RQSEN system. The purpose of the RQCRE program is to remove the chance of errors in
the problem formulation. The RQSEN program requires approximately 30 arrays to be
dimensioned which are automatically dimensions by RQCRE. The RQCRE program also
automatically writes the calling program and data files required by the RQSEN system.

The RQCRE program requires the user to provide basic information about the
problem such as the number of variables, number of equality constraints, number of
inequality constraint, and number of parameters that will be studied.

The RQCRE . system then produces a main calling program, a shell of the function
subprogram! used to define the objective function and the constraints, and a data file used
for input into the RQSEN system (sample output is provided in the appendix). The

1 The RQCRE program is not designed to allow the user to enter definitions of the objective function or
constraints, these definitions must be entered manually into the code that was generated by RQCRE.
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RQCRE program also sets up the default values for the algorithm parameters used by
RQOPT.

4.2.2 The RQSEN program

The RQSEN system was set up as a pre and post processor for the RQOPT
program. The RQSEN system was set up to be an interactive user friendly program for
performing the following basic functions;

1. The system can be used to solve optimal design problems
2. The system can be used to calculate parameter sensitivities

3. The system can be used to conduct studies of large variations in problem
parameters

4. The system is also set up to create sensitivity plots of that can be used to
perform trade off studies.

A sample session with the RQSEN system illustrating these options is presented in the
appendix.

The RQSEN system requires a calling program and a function subprogram
(defining the objective function and the constraints) to be written in FORTRANZ. The
RQSEN system also requires the user to define a data file that contains the algorithm
parameters, and the initial values of the design variables and design parameters. The user
can then direct the RQSEN program to study the sensitivities of only certain parameters.

The RQSEN program first produces optimum designs. Once the problem has been
optimized the RQSEN system can be used to produce parameter sensitivity derivatives,
which can then be used to study the effect on the optimum of large variations in the
parameters. The RQSEN system is also set up so that an external graphing program can be
used to create plots of the optimum sensitivities for large variations in the parameters can be
studied. A typical plot is presented in figure

2 The RQCRE system can be used as an aid in creating the calling program and function subprogram.
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Figure 4.1 A plot of the Sensitivity of the Optimum of test problem 1 to p(3)

Plots similar to this one can also be generated for the design variables, Lagrange
multipliers and values of the constraints. These plots can then be used to assess the
characteristics of the problem (such as nonlinearity and changes in the active set). Using
these plots to assess the characteristics of the problem will be discussed in the results part

of chapter 5. Plots similar to figure 4.1 are presented in the appendix for problems in the
test set.
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S. Numerical Experiments

This chapter describes the numerical experiments that have been conducted to date
on the new sensitivity method. We begin by discussing the initial test set used and any
special features of the selected problems. Next, we discuss testing that has been performed
comparing the accuracy of the known Hessian to the approximations obtained, which
includes comparisons of the BFS and SR1 updates. In the third section, the accuracy of
the sensitivity derivatives obtained with the new sensitivity algorithm is assessed against
the known results. This section also compares the effect of choosing a central or forward
difference formula and the effect of the step size Ap. The final section presents some

conclusions drawn from this initial testing.

5.1. INITIAL TEST SET

A two phase testing program has been formulated for studying the effectiveness of
the new method for estimating parameter sensitivity. The first phase was to develop a set
of test problems for which the parameter sensitivities could be exactly determined using the
Kuhn-Tucker equations. This required that any second order information needed could be
determined analytically. Choosing problems of this type would allow a direct comparison
of the sensitivity results produced by the new method with the exact sensitivities and also
allow the comparison of the BFS and SR1 Hessian approximations. From this study we
hope to develop some insight into several questions concerning the algorithm such as:
proper choices for algorithm parameters (i.e. the proper size of Ap), what is the most
reliable Hessian approximation, how close does the Hessian approximation have to be to
achieve good results, does updating the Hessian approximation during the sensitivity
analysis significantly improve the estimate, and which of the variants (forward/central
difference approximations with one or two iterations of RQOPT) described in chapter 3
provides the most consistent results.

The second phase of the testing would consist of testing the algorithm against a set
of engineering problems where second order information would not be available. Here the
results obtained from the sensitivity algorithm would be compared to actual reoptimization
results to assess its accuracy. In the time allotted for this study, only the first phase of
testing has been completed and is reported on here.

The problems making up the initial test set are presented in the appendix of this
report. We have experimented so far with 4 test problems that have a total of 12
parameters. The problems possess both linear and nonlinear behavior. We expect to
expand this test set in the near future. Plots of the optimum sensitivity for selected
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problems and parameters are also presented in the appendix.

5.2. CONVERGENCE OF THE HESSIAN APPROXIMATION

The derivation given in section 3.2.1 showed that equivalence of the new method
with the Kuhn-Tucker method depends on the accuracy of the Hessian approximation
obtained from the RQP method. Using this initial test set we hope to observe how closely
the Hessian approximation comes to the exact Hessian and draw some initial conclusions

on its importance to the accuracy of the results.

-A measure of the closeness of the Hessian approximation to the true Hessian can be
defined using the Frobenius norm as

€H = TH - Happrox ”F (5.1)
This measure has been used in the past to compare the convergence of different variable
metric updates (Dennis and Schnable 1983).

For test problem 1 the true Hessian of the Lagrangian is
264 0
H=] "0 25
From the RQOPT program we obtained the following Hessian approximation with the BFS

update

H _[1.50017 -.540310
BFS=|..540310 2.34388

which gave us a egggg = 1.396.

Using the SR1 update from the same starting point, we obtained the following
Hessian approximation

Hswi=[ 502030 3.61374
with gives a €ggg; = 0.0164. This represents a large improvement in the closeness of the
Hessian approximation. However, even though the Hessian approximation for the SR1
update is much better than the Hessian approximation for the BFS update the problems
were solved in the same number of iterations (and function/constraint evaluations) of
RQOPT.

The results given above were obtained with a value of  =1.1. The § parameter
controls the size of the active set during the course of an optimization; a large & will cause
more near active constraints to be considered as part of the active set, a small value of 8 will
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allow only truly active constraints to be considered. Having the proper set of active
constraints identified early in the optimization could effect the accuracy of the Hessian
approximation. To test this, a larger value of 8 (8 =10.1) was chosen and the problem

resolved obtaining the following Hessian approximations

H _[2.329 3227
BFS=| 3227 2.264

H _[2.6394 .00093
SRIZ].00093 2.5990

the values of egppg = 0.6019 and exgr, = 0.00174 were obtained. These improved
Hessian approximations result because RQOPT was able to identify the correct active set of
constraints sooner. With the large value of 8 RQOPT required the same number of

iterations to solve the problem, but required more constraint evaluations.

Another implementation issue that needs investigation concerns whether the
Hessian approximation obtained from the optimization should be further updated during the
reoptimizations performed to estimate the sensitivities. To study the effect of allowing
Hessian updates during the reoptimization, the sensitivity with respect to parameter 3 in
problem 1 was estimated with this option enabled. The Hessian approximation that was
used at the start of the sensitivity analysis is the Hessian approximation that was obtained
with the BFS update and 8 = 1.1. After estimating the sensitivity, we obtained the
following Hessian approximation

H _[2.63975 .00013
BFS=| .00013 2.59957

with eHggg = 0.00053. This indicates that there is a possibility for improving the Hessian

approximation if we allow updating during the sensitivity analysis.

Tests for problem 2 were also performed, whose true Hessian of the Lagrangian is
given by
511
H=[1 51 ]
115

Using the starting point provided in the problem description, we obtain the following value
of the Hessian approximation (from RQOPT) when we use the BFS update

4.4976 1.9976 0.49763
HBFFI: 1.9976 2.9976 1.9976 ]
0.49763 1.9976 4.4976

with eHgps = 3.000. When we use the SR1 update we obtain the following value of the

Hessian approximation
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€Hsg; = 3.0. If we allow the Hessian matrix to be updated while estimating the sensitivity
of p; with a Ap = 0.0001 we obtain

Hpgs=| 1.0070 4.9964 0.9665

4.9448 1.0070 1.1749 ]
11.1749 0.9665 4.3990

511
HSR1=151i|
(115

with eggps = 0.6541 and with eggg, = 0.00. This represents a significant improvement

of the Hessian approximations, particularly when the SR1 update is used.

If we calculate the sensitivity of pp and use the SR1 update we also obtain exact
convergence of the Hessian approximation. However if we use the BFS update we do not

obtain exact convergence but an improvement similar to that of the first problem is
achieved.

For Test problem 3 the Hessian of the Lagrangian is

1200 0
0800
H=[001oo]
000 4

If we use the starting point that was provided in the problem description, the approximation
to the Hessian of the Lagrangian (form RQOPT) using the BFS update is

-0.4657 7.7556 -0.5500 0.0174
-2.502 -0.5500 4.062 0.7464
-0.9879 0.0174 0.7464 2.1579

with eggpg = 7.76. If we use the SR1 update to solve the problem then we obtain the

following approximation to the Hessian

9.785 -0.4657 -2.502 -0.9879
HBFF[ }

-0.02493 7.9792 -0.03037 0.01095
-0.04194 -0.03037 9.9679 0.00222
0.02212 0.01095 0.00222 4.01399

with a eggg; = 0.130. This represents a major improvement in the Frobenius norm.

11.9744 -0.02493 -0.04194 0.02212
HSR1=|: ]

For Test problem 4 the Hessian of the Lagrangian is

6.72 -40 -2.0 6.4 -2.0
-4.0 9.4006 -1.2 -6.2 6.4
H= -2.0 -1.2 4.4 -1.2 -2.0
6.4 -6.2 -1.29.3418 -4.0
-2.0 6.4 -2.0 -4.0 6.2688

48



using the starting point that was defined in the appendix, RQOPT with the BFS update
yields the following Hessian approximation
6.280 -3.963 -1.417 6.458 -1.924
-3.963 8.052 -0.561 -6.247 5.775
Hpps< -1.417 -0.561 1.548 -0.932 -1.449

6.458 -6.247 -0.932 9.3465 -4.024
-1.924 5.775 -1.449 -4.024 5.974

with EHBFS = 3.6226.

When we attempted to use the SR1 update, the Hessian approximation became
nearly singular after 5 iterations and the Hessian approximation was automatically reset to
the identity matrix by RQOPT. RQOPT delivered the following Hessian approximation

4.6611 -4.8848 0.1290 5.2854 -3.5329
-4.8848 7.5178 -.1721 -7.0517 4.7140
Hgri= 0.1290 -0.1721 1.0046 .1862 -.1245

5.2854 -7.0517 0.1862 8.6328 -5.0996
-3.5329 4.7140 -.1245 -5.0996 4.4094

with €qgr; = 9.307. The inaccuracy of this Hessian approximation results because a total
of only 7 iterations were needed to solve the problem, and a reset occurred after the fifth
iteration. Therefore, only 2 iterations could be used to build the Hessian approximation.
In the near future we will investigate why the Hessian approximation became nearly
singular after the 5th iteration.

A summary of the results of this section are presented in the Table 5.1 where g
represents the error between the true Hessian and the identity matrix used at the outset of
the optimization. Using the BFS update we see that we were not able to converge to the
exact Hessian but the inaccuracies do not seem to be large. As mentioned before, this may
be due to RQOPT not using exact line searches which the BFS method assumes. Allowing
updating of the Hessian approximation during the sensitivity analysis seems to improve the
estimate of the Hessian of the Lagrangian.

Using the SR1 update we were able to obtain better estimates of the Hessian of the
Lagrangian for both problem 1 and 3. For problem 2 the Hessian of the Lagrangian that
was produced by the SR1 update had converged in a projected or reduced sense. The
inaccuracies in problem 4 are due to a near singular point which is discussed above.

Problem €0 €BFS €SR1 €BFS with updating
1 2.291 1.396 0.061 0.0005
2 7.348 3.0000 3.0 0.654
3 15.93 7.76 0.130 5.186
4 23.276 3.6226 9.307 1.698

Table 5.1 A comparison of the Frobenius norms of the Hessian approximations
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5.3. RESULTS

This section presents a comparison of the sensitivity derivatives calculated by the
new method with the known sensitivities for the problems in the initial test set. We also

present a means that can be used to compare the accuracy of the sensitivity derivatives
graphically.

The measure for accuracy that will be used was also used by Sandgren (1977).
Sandgren compared the closeness of the optimum design point generated to known
optimum point, and the closeness of the value of the known optimum objective function
value to the generated value of the optimum plus a penalty for any violated constraints.
Sandgren defined the following measures

£(x) -f(x*
SfE{ABS[——(Xf)(xi()X )] for f(x*) = 0 5.2)
ABS[f(x)] for f(x*) = 0

where f(x*) is the true value of the optimum and f(x) is the value returned by the
algorithm. The total error is calculated as

nineq neq
g=g+ 3 <g>+ X(h) (5.3)
F1 i=1

where <a>=(0,ifa201-aif a<0). The g measure is used because it does not bias any
constraints.

The relative error in the x vector is defined as

Ex =\/ i§1 [ilxl%*]z 5.4)

in equation 5.4 if x;* is equal to zero then the relative error in x; is defined as the value of
Xj.

We will define the relative error in the gradient (df*/dp) of the objective function as
follows
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(e, s
" dAn *
ABY o | for d—(%;e 0
edf"/dp% T (5.5)
[ df* df*
LABSL"('i'ﬁ'eSt:I for Eﬁ- =

We will define the relative error in dx*/dp and du*/dp in the same manner as €x and denote
these values as €gx+/gp and €3u*/ap respectively. Eight digits of accuracy were maintained

in calculating the relative errors.

The optimal sensitivities for the test problems were calculated using the Kuhn-
Tucker method with exact derivatives. Once the optimal sensitivities for the problems were
known, experiments were conducted using RQSEN on the initial test set. Both the forward
difference and central difference variants of the RQP sensitivity algorithm were tested with
large and small values of perturbation for the parameters. For all cases, RQOPT! was
allowed to perform two iterations to optimize the perturbed problem. However, there were
some instances where RQOPT required only one iteration to meet the convergence criteria.
A spreadsheet was used to automate the calculation of the relative errors in the derivatives
using the formulas given above. Summary tables showing the relative errors in the
calculation of the derivatives will be presented for each of the problems.

Plots of the optimal sensitivities for large variations in the parameters were also
created for all of the parameter sensitivities that were studied. The interesting plots will be
included in the appendix of this report. These plots can be used to help asses the
nonlinearity in the sensitivity derivatives, and to help to understand the effect of changes in

the active set.

The rest of this section presents tables and figures showing the relative accuracy of
the sensitivity derivatives. A brief discussion of the results for each problem is offered.

5.3.1 Problem1

Problem 1 possesses three parameters for study. Sensitivities of the objective
function, design variable, and Lagrange multipliers for each parameter were estimated
using the four variations of the basic algorithm. The results are compared against the exact
sensitivities in Tables 5.2 - 5.7. In most cases, the estimated sensitivities agree with the
known sensitivities with few exceptions. As might be expected, the central difference ‘
approximations in all cases provides better estimates than the forward difference ‘
approximations. No strong conclusions with respect to the choice of Ap can be drawn
from this problem. For parameter 1, both sizes of Ap provide exact sensitivities. For

IThe gradients of the objective function and constraints were calculated using central and forward difference
approximations.
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parameter 2, the larger value of Ap provides better results while for parameter 3, the
smaller value of Ap provides the best results. A review of the sensitivity plot for this

parameter (figure A.2) shows that the sensitivities for this parameter are nonlinear.

In conclusion, for this problem, using a central difference approximation with either
step size for Ap resulted in no significant errors in the sensitivity estimates.

Kuhn Tucker Central Difference Approximations

Method AP =2% relative error AP=0.1% relative error
df/dp  1.0000000 1.00000000  0.00E+00 1.00000000 0.00E+00
dx;/dp 0.0000000 0.000000 0.000E+00 0.000000 0.000E+00
dxy/dp 0.0000000 0.000000 0.000E+00 0.000000 0.000E+00
€x 0.00E+00 0.00E+00
duy/dp -0.2000000 -0.200000 0.000E+00 -0.200000 0.000E+00
duy/dp 0.4000000 0.400000 0.000E+00 0.400000 0.000E+00
€y 0.00E+00 0.00E+00

Table 5.2 Central Difference Approximations to the Parameter Sensitivities for problem 1
parameter 1

Kuhn Tucker Forward Difference Approximation

Method AP =2% relative error AP=0.1% relative error
df/dp  1.0000000 1.06000000 -6.00E-02 1.00300000 -3.00E-03
dx;/dp 0.0000000 0.000000 0.000E+00 0.000000 0.000E+00
dxy/dp 0.0000000 0.000000 0.000E+00 0.000000 0.000E+00
€x 0.00E+00 0.00E+00
duy/dp -0.2000000 -0.2000301 -1.503E-04 -0.2006318 -3.159E-03
duy/dp 0.4000000 0.39984547 3.863E-04 0.39693215 7.670E-03
€u 4.15E-04 8.29E-03

Table 5.3 Forward Difference Approximations to the Parameter Sensitivities for problem 1

parameter 1
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df/dp

dx 1 / dp
dxo/dp
€x

duy/dp
duy/dp

€y

Table 5.4 Central Difference Approximations to the Parameter Sensitivities for problem 1

Kuhn Tucker
Method

-0.3000000

0.1000000
-0.2000000

-0.1304000
0.0008000

parameter 2

df/dp
dX1 / dp
dx,/dp
€x
duy/dp

duy/dp
€n

Table 5.5 Forward Difference Approximations to the Parameter Sensitivities for problem 1

Kuhn Tucker
Method

-0.3000000

0.1000000
-0.2000000

-0.1304000
0.0008000

parameter 2

Central Difference Approximations

AP =2%
-0.30000000

0.10000011
-0.20000030

-0.13040090
0.00079973

relative error
0.00E+00

-1.100E-06
3.000E-06

3.20E-06

-6.902E-06
3.363E-04

3.36E-04

AP=0.1%
-0.30000000

0.10000359
-0.20000320

-0.13040262
0.00080051

Forward Difference Approximations

AP =2%
-0.30000000

0.10004811
-0.20017630

-0.13061831
0.00114555

relative error
0.00E+00

-4.811E-04
-8.815E-04

1.00E-03

-1.674E-03
-4.319E-01

4.32E-01

53

AP=0.1%
-0.30000000

0.10000681
-0.20000665

-0.12851547
0.00999551

relative error
0.00E+00

-3.590E-05
-1.600E-05

3.93E-05

-2.009E-05
-6.325E-04

6.33E-04

relative error
0.00E+00

-6.810E-05
-3.325E-05

7.58E-05

1.445E-02
-1.149E+01

1.15E+01




Kuhn Tucker Central Difference Approximations

Method AP =2% relative error AP=0.1% relative error
df/dp  -0.4000000 -0.40000000 0.00E+00 -0.40000000 0.00E+00
dxi/dp 1.2000000 1.19995460  3.783E-05 1.19999990 1.000E-06
dxy/dp 0.6000000 0.60007142 -5.952E-05 0.60000018 -3.000E-07
Ex 7.05E-05 1.04E-06
duy/dp 0.4048000 0.40501856 -5.399E-04 0.40480055 -1.359E-06
duy/dp -0.5896000 -0.58972201 -2.069E-04 -0.58960030 -5.088E-07
&y 5.78E-04 145E-06

Table 5.6 Central Difference Approximat